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Abstract 
Count data, such as recreational fishing trips taken by anglers, is increasingly common in recreational fishing 
demand analysis. Because of the non-negative integer nature of the recreational fishing trip data, some over-
dispersion problems, and truncation of the data at zero trips, count data models are more appropriate for estimating 
the recreational fishing demand function. This study employed count data models to analyze U.S. saltwater 
recreational fishing trips with excess zeros, using a cross-sectional data extracted from the 2011 National Survey 
of Fishing, Hunting, and Wildlife Associated Recreation. Using Akaike Information Criterion and Bayesian 
Information Criterion, the zero-truncated negative binomial model was selected among other count data models 
better fitted in this count data for this study. Empirical results of this study provide insight into the determinants 
of saltwater recreational fishing trips, which can be used in analyzing the social and economic values of saltwater 
recreational fisheries management. 
 
Keywords: Count Data, Excess Zeros, Hurdle Poisson Model, Negative Binomial Model, Over-Dispersion, 
Poisson Model, Saltwater Recreational Fishing Trips, Zero-Inflated Models, Zero-Truncated Models 
 
 

1. Introduction 

Saltwater recreational fishing is a popular pastime across the nation that generates significant economic impacts 
both to local economies and to the nation. According to the report of the 2011 National Survey of Fishing, Hunting 
and Wildlife-Associate Recreation, saltwater recreational fishing attracted 8.9 million anglers who took 86.2 
million trips in 99 million days. A total amount of $10.3 billion was spent on saltwater recreational fishing trips 
and equipment during that year. Expenditure on trip-related cost totaling $7.3 billion was the highest, 
Accommodation and food cost $2.4 billion, and transportation cost was $1.5 billion.  Other miscellaneous cost 
such as guide fees, licenses, permits, bait, membership dues and equipment rental were $3.4 billion (U.S. Fish and 
Wildlife Service, 2014). 
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Saltwater recreational fishing is usually done with equipment such as rod, reel, bait, hook and line. It was estimated 
that anglers on equipment for saltwater recreational fishing spent a total of $2.9 billion. A detailed breakdown of 
this cost comprised of $1.4 billion on main fishing equipment (rod, reel, hook and line), $1.3 billion for special 
equipment (boats, travel vans etc.) and $217 million for auxiliary equipment (binoculars, camping equipment etc.) 
(U.S. Fish and Wildlife Service, 2014). 
 
In 2011, saltwater recreational anglers spent an average of 11 days fishing and enjoyed an average of 10 trips. 
Saltwater recreational anglers spent an average of $824 per angler on trip related costs which was the highest 
average expenditure cost compared to average expenditure of freshwater recreational anglers and great lake 
recreational anglers, an average of $74 per day (U.S. Fish and Wildlife Service, 2014). 
 
The most commonly sought fish among saltwater recreational anglers are striped bass, flatfish, redfish, sea trout, 
bluefish, salmon and mackerel. According to the 2011 National Survey of Fishing, Hunting and Wildlife-Associate 
Recreation, 2.1 million saltwater recreational anglers fished for striped bass for 18 million days, 2 million anglers 
fished for flatfish for 22 million days. 1.5 million Anglers fished for redfish for 21 million days and 1.1 million 
saltwater recreational anglers fished for 15 million days (U.S. Fish and Wildlife Service, 2014). 
 
A comparison of the 2001, 2006 and 2011 National Survey of Fishing, Hunting and Wildlife-Associate Recreation 
indicated the total number of saltwater recreational anglers decreased significantly from 9.5 million in 2001 to 7.7 
million in 2006 and then increased to 8.9 million in 2011. Total expenditures on saltwater recreational fishing trip-
related costs and equipment increased slightly from $8.4 billion in 2001 to $8.9 billion in 2006, and also increased 
to $10.3 billion from 2006 to 2011 (U.S. Fish and Wildlife Service, 2002, 2007, 2014).  
 
Many studies neglect how best to model saltwater recreational fishing trips and get meaningful insights into the 
behavior of saltwater recreational anglers that affect their saltwater recreational fishing behavior and participation. 
This engender the reason for this study so as to provide guidelines and create awareness for the proper use of count 
data models  that will lead to more  accurate results and get a better understanding of saltwater recreational fishing 
trips. It may also contribute to a better understanding of current and future angler behavior of saltwater recreational 
fishing participation and consumption. 

2. Count Data Models 

In statistics, count data (i.e., saltwater recreational fishing trips) is a statistical data type, a type of data in which 
the observations can take only the non-negative integer values, and where these integers arise from counting rather 
than ranking. Particularly in the econometric literature, there has been considerable interest in models for count 
data that allow for excess zeros in the national survey, such as the 2011 National Survey of Fishing, Hunting and 
Wildlife-Associate Recreation. 
 
When the statistical requirements are met, the standard ordinary least squares (OLS) technique could be used to 
estimate the saltwater recreational fishing demand function. Because of the non-negative integer nature of the 
recreational fishing trip data, some over-dispersion problems, and truncation of the data at zero trips, the standard 
OLS estimator may be inappropriate, but count data models are more appropriate for estimating the saltwater 
recreational fishing trips.  
 
Count data modeling techniques have become important tools in empirical studies of economic research and their 
applicability continues to grow in various areas of economics, e.g., health economics (i.e., the number of doctor 
visits), labor economics (i.e., labor mobility), financial economics (i.e., the number of reported claims, the number 
of bank failures), industrial organization (i.e., entry and exit in industries), transportation (i.e., the number of car 
accidents), and tourism and outdoor recreation (i.e., the number of fishing trips). 
 
The count data models considered in this study including Poisson model, negative binomial model, zero-inflated 
Poisson (ZIP) model, zero-inflated negative binomial (ZINB) model, zero-truncated Poisson (ZTP) model, zero-
truncated negative binomial (ZTNB) model, and hurdle Poisson Model. These count data models were also 
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compared against each other using Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). 

2.1 Poisson Model 

The Poisson model is based on the Poisson distribution, was discovered by Simon Denis Poisson and published 
together with his probability theory in 1838 in his work “Research on the Probability of Judgments in Criminal 
and Civil Matters” (Good, 1986). In probability theory and statistics, the Poisson distribution is a discrete 
probability distribution that expresses the probability of a number of events occurring in a fixed period of time. 
 
Poisson distribution is a probability distribution for count data that satisfies the discrete probability distribution 
(Greene, 2008) represented by,  
 

𝑃(𝑌	 = 	𝑦	|	𝜆) 	=
𝑒+,𝜆-

𝑦!  

 
where Y is a random variable having Poisson distribution and λ is the mean of the distribution. The Poisson 
regression model is similar to regular multiple regression model except that the dependent variable, y, is an 
observed count from the Poisson distribution. The most common formulation for λ is the log-linear model, 
 

ln(λ) = β0 + β1 x1 + β2 x2 + … + βkxk = xTβ  . 
 
The parameter λ is both the mean and variance of the random response variable Y and depends on a set of k 
explanatory variables, x1, x2, … xk, in vector x. A sample of observations can be considered as dependent variable 
vector Y= (Y1, Y2, …, Yn) that each Yi is distributed independent Poisson (λi) where the expected count of Yi is E(Y) 
= λ, i.e.,  
 

λ = 𝑒𝐱0𝛃, with E(Y | x ) = Var(Y | x) = 𝑒𝐱0𝛃. 
 
The Poisson model typically is assumed for count data, but when there are many zeros in the response variable, 
the mean is not equal to the variance value of the dependent variable, because of over-dispersion, the negative 
binomial model is suggested instead of the Poisson model.  

2.2 Negative Binomial (NB) Model 

The negative binomial distribution, like the Poisson distribution, describes the probabilities of the occurrence of 
whole numbers greater than or equal to zero. Unlike the Poisson distribution, the variance and the mean are not 
equivalent. This suggests it might serve as a useful approximation for modeling count data with variability different 
from its mean and it enables the model to have greater flexibility in modeling the relationship between the 
conditional variance and the conditional mean compared to the Poisson model. The negative binomial model 
(Greene, 2008) can be expressed as, 
 

P(𝑌	 = 	𝑦	|	𝜆, 𝛼) 	=
𝛤(𝑦 + 𝛼+7)

𝛤(𝑦 + 1)𝛤(𝛼+7) 9
1

1 + 𝛼𝜆:
;<=

9
𝛼𝜆

1 + 𝛼𝜆:
-

		. 

 
where λ = 𝑒𝐱0𝛃 and α is the dispersion parameter. As the value of dispersion parameter increases, the variance 
converges to the same value as the mean, and the negative binomial distribution turns into a Poisson distribution. 
The conditional mean and variance of the negative binomial distribution are, 
 

E(Y | x) = λ = 𝑒𝐱0𝛃 and Var(Y | x) = λ(1 + αλ) > E(Y | x). 
 
The Poisson distribution has only one parameter (λ), whereas the negative binomial distribution has two parameters 
(λ and α). Due to this property, the negative binomial model is more flexible than the Poisson model. Moreover, 
the Poisson model should have the same mean and variance value and this is not what happens in the real data. 
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Thus, the negative binomial model can be used instead of the Poisson model when the count data under 
consideration is over-dispersed. 
 
The other problem with the Poisson and negative binomial models having far more zeros than expected by the 
distribution assumptions of the Poisson and negative binomial models result in incorrect parameter estimates 
(Hardin and Hilbe, 2012). Using the zero-inflated models, such as the zero-inflated Poisson model (Lambert, 1992) 
or the zero-inflated negative binomial model (Hall, 2000), are proposed as a solution for this problem (Loeys et 
al., 2012). The zero-Inflated models attempt to account for excess zeros, i.e., there is thought to be two kinds of 
zeros, “true zeros” and “excess zeros”. Therefore, the zero-Inflated models estimate two equations, one for the 
count data and one for the excess zeros.  

2.3 Zero-Inflated Poisson (ZIP) Model 

The zero-inflated Poisson model (ZIP) is used to model count data that has an excess of zero counts. Mullahy 
(1986), Heilbron (1994) and Lambert (1992) pioneered the use of regression model based on the ZIP distribution. 
Further, theory suggests that the excess zeros are generated by a separate process from the count values and that 
the excess zeros can be modeled independently. Thus, the ZIP model has two parts, a Poisson count data model 
and a Logit model for predicting excess zeros (Lambert, 1992). In general, the random variable Y takes on 0 with 
probability ω and Y takes on a value from Poisson (λ) with probability (1 – ω), the probability mass function of 
the random variable Y representing the ZIP model can be expressed as: 
 

𝑃(𝑌	 = 	𝑦	|	𝜆) = ?
	𝜔 + (1–𝜔)𝑒+,				,										if	𝑦	 = 	0,

	(1–𝜔)E
𝑒+,𝜆-

𝑦! F 			,										if	𝑦	 > 	0		.
 

 
The mean and variance of the ZIP model are:  
 

E(Y | x) = λ(1 – ω) and Var(Y | x) = λ(1 – ω)(1 + ωλ). 
 
If the variance displayed above is greater than the mean, it indicates over-dispersion and the ZIP model is not 
appropriate in such instance. In such cases the zero-inflated negative binomial model is fitted. Moreover, the non-
zero observations may be over-dispersed in relation to the Poisson distribution, biasing parameter estimates and 
underestimating standard errors. In such a circumstance, the zero-inflated negative binomial model better accounts 
for these characteristics compared to the ZIP model. 

2.4 Zero-Inflated Negative Binomial (ZINB) Model 

The zero-inflated negative binomial (ZINB) model has been used for modeling both zero-inflation and over-
dispersion in count data. Furthermore, theory suggests that the excess zeros are generated by a separate process 
from the count values and that the excess zeros can be modeled independently. Greene (1994) gives details of 
analogous ZINB model. The ZINB distribution is a mixture of a binary distribution that is degenerate at zero and 
an ordinary negative binomial distribution (Hall, 2000).  
 
With probability ω, the response of the first process is a zero count, and with probability of (1–ω), the response of 
the second process is governed by a negative binomial with mean λ and can also generate zero counts. The overall 
probability of zero counts is the combined probability of zeros from the two processes. Thus, the ZINB model for 
the response y can be written as: 
 

𝑃(𝑌	 = 	𝑦	|	𝜆, 𝛼) =

⎩
⎪
⎨

⎪
⎧ 𝜔	 +	(1–𝜔) 9

1
1 + 𝛼𝜆:

;<=

																																								,														if	𝑦	 = 	0,

(1–𝜔)
𝛤(𝑦 + 𝛼+7)

𝛤(𝑦 + 1)𝛤(𝛼+7) 9
1

1 + 𝛼𝜆:
;<=

9
𝛼𝜆

1 + 𝛼𝜆:
-

	,														if	𝑦	 > 	0		.
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where α (≥ 0) is a dispersion parameter that is assumed not to be depend on covariates. The mean and variance of 
the ZINB model are:  
 

E(Y | x) = λ(1 – ω) and Var(Y | x) = λ(1 – ω)(1 + λ(ω + α)). 
 
In many situations, observed samples may be considered as zero truncated. These kinds of data should be analyzed 
by a zero-truncated distribution, an alternative distribution to the count data with zero counts cannot be observed. 
The zero-truncated distribution is a certain distribution having support the set of positive integers. This distribution 
is applicable for the situations when the data to be modeled originate from a mechanism that generates data 
excluding zero counts, such as the zero-truncated Poisson distribution (David and Johnson, 1952) and the zero-
truncated negative binomial distribution (Sampford, 1955). 

2.5 Zero-Truncated Poisson (ZTP) Model 

In probability theory, the zero-truncated Poisson (ZTP) distribution is a certain discrete probability 
distribution whose support is the set of positive integers. This distribution is also known as the conditional Poisson 
distribution (Cohen, 1960) or the positive Poisson distribution (Singh, 1978). It is the conditional probability 
distribution of a Poisson distributed random variable, given that the value of the random variable is not zero. Thus, 
it is impossible for a ZTP random variable to be zero.  
 
Since the ZTP is a truncated distribution with the truncation stipulated as y > 0, one can derive the probability 
mass function from a standard Poisson distribution as follows:  

P(𝑌	 = 	𝑦	|	𝑌	 > 	0) 	=
𝑒+,𝜆-

(1 − 𝑒+,)𝑦!		. 

 
The mean and variance of the ZTP model are: 
 

E(𝑌	|	𝑌	 > 	0) 	=
𝜆

1 − 𝑒+, 

 
and 
 

Var(𝑌	|	𝑌	 > 	0) =
𝜆(1 + 𝜆)
1 − 𝑒+, −

𝜆Q

(1 − 𝑒+,)Q		. 

 

2.6 Zero-Truncated Negative Binomial (ZTNB) Model 

Given the importance of accounting for over-dispersion in truncated count context, the zero-truncated negative 
binomial (ZTNB) model is the appropriate model for the analysis of such count data. The ZTNB model is used to 
model count data for which the value zero cannot occur and for which over-dispersion exists. A detailed discussion 
of the ZTNB model can be found in Gurmu (1991) and Grogger and Carson (1991). The ZTNB model for the 
response y can be written as: 
 

P(𝑌	 = 	𝑦	|	𝑌	 > 	0) 	=
Γ(𝑦 + 𝛼+7)
Γ(𝛼+7)𝑦! 	9

𝛼𝜆
1 + 𝛼𝜆:

- (1 + 𝛼𝜆)+;<=

S1 − (1 + 𝛼𝜆)T+;
<=			. 

 
The conditional mean and conditional variance of the ZTNB model are: 
 

E(𝑌	|	𝑌	 > 	0) =
𝜆

1 − (1 + 𝛼𝜆)+;<=	
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and  

Var(𝑌	|	𝑌	 > 	0) =
𝜆

1 − (1 + 𝛼𝜆)+;<=
1 + 𝛼𝜆 − 𝜆(1 + 𝛼𝜆)+;<=

1 − (1 + 𝛼𝜆)+;<=
	. 

 

2.7 Hurdle Poisson Model 

A hurdle model (Mullahy, 1986), or two-part model (Heilbron, 1994), is a modified count model in which there 
are two processes, one generating the zeros and one generating the positive values. The two models are not 
constrained to be the same. The concept underlying the hurdle model is that a binomial probability model governs 
the binary outcome of whether a count variable has a zero or a positive value (Shonkwiler and Shaw, 1996). If the 
value is positive, the hurdle is crossed, and the conditional distribution of the positive values is governed by a 
zero-truncated count model.  
 
The differences between the hurdle models and the zero-inflated models are that zero and non-zero counts are 
separately modeling in the hurdle models (Loeys et al., 2012), and also hurdle models assumes that all zero counts 
are true zeros (Potts and Elith, 2006). The hurdle Poisson model with count variable y has the distribution as: 
 

𝑃(𝑌	 = 	𝑦	|	𝜆, 𝜔) = ?
	𝜔																					,					if	𝑦	 = 	0,

	
(1–𝜔)𝑒+,𝜆-

(1 − 𝑒+,)𝑦! 		,					if	𝑦	 > 	0		.
 

 
If y > 0 means the hurdle is crossed then the conditional distribution of the non-zero values is managed by a zero 
truncated model, λ is the mean of the Poisson distribution, and ω is the probability value of the zero counts. For 
estimating the parameter values, maximum likelihood method is used. The hurdle Poisson model is nothing but a 
re-parameterization of the ZIP model. Although for both models the parameters are modeled in the regression 
framework, hurdle Poisson model is not the same as the ZIP model. 

3. Data 

Data used for this study was extracted from the 2011 National Survey of Fishing, Hunting, and Wildlife-Associated 
Recreation (U.S. Fish and Wildlife Service, 2014), which is developed by the U.S. Fish and Wildlife Service every 
five years. This type of survey started in 1955 and the 2011 survey is the 12th of its kind. It is one of the 
comprehensive and most reliable recreation surveys in the United States. Basically, the survey aims to collect 
information on the frequency of participation and expenditure on fishing activities in the United States as well as 
the number of anglers, hunters and wildlife watchers. 
 
Data was collected for the survey by the U.S Census Bureau in two phases namely the screening phase and three-
detailed wave process. In the screening phase, the U.S. Census Bureau interviewed a sample of 48,600 households 
in the United States to identify respondents who had participated in wildlife-related activities in the year of 2011 
to gather information on fishing, hunting, and wildlife watching participation, expenditures, and socioeconomic 
characteristics of respondents. Mostly, one adult household member provided information for all members.  
 
The second phase of the survey consisted of three detailed interviews. Interviews were conducted with people who 
were at least 16 years who were chosen from the screening phase. According to the report from the 2011 National 
Survey of Fishing, Hunting and Wildlife-Associated Recreation, most of the respondents were interviewed by 
phone whiles in-person interviews was used for those who couldn’t be reached on phones. From this initial phase, 
6,052 saltwater recreational anglers were selected for a detailed interview about their participation and 
expenditures associated with saltwater recreational fishing activities in the United States in 2011. 
 
From this initial phase, 6,052 saltwater recreational anglers were selected for a detailed interview about their 
participation and expenditures associated with saltwater recreational fishing activities in the United States in 2011, 
based on the question “Respondent fished in saltwater in the United States in 2011?” and “Total saltwater fishing 
trips respondent took in the United States in 2011?” (Figure 1). 
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Figure 1. U.S. Saltwater Recreational Fishing Trips 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: 2011 National Survey of Fishing, Hunting, and Wildlife-Associated Recreation 
 
Figure 2 also shows a sharp decreasing trend of the distribution with most of the count data being zero. Average 
number of saltwater recreational fishing trips was 3.07 for the total sample (n = 6,052), but average number of 
saltwater recreational fishing trips was 10.94 for the sample with non-zero cases (n = 1,699). About 72% of 
respondents reported zero trip (n = 4,353). It could have the possibility of over-dispersion consideration in this 
count data. In addition, the high percentage of zeros seen from the histogram suggests an issue of excess zeros 
and/or a zero inflated data. 
 

Figure 2. Distribution of U.S. Saltwater Recreational Fishing Trips 

                                                    
Source: 2011 National Survey of Fishing, Hunting, and Wildlife-Associated Recreation 
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4. Empirical Results 

 
An analysis of recreational saltwater fishing trips can be beneficial from the use of appropriate econometric 
analysis and measurement to comprehend the full value of this type of saltwater recreational fishing activities 
within the framework of saltwater recreational fisheries management and policy. In particular, analyzing saltwater 
recreational fishing trips in the framework of an angler who allocate the constrained budget to maximize utility 
improves a better understanding of the tradeoffs made in this process. 
 
According to consumer demand theory, angler attempts to maximize his/her utility from saltwater recreational 
fishing activities subject to his/her budget constraint. Thus, the maximization of the utility function for saltwater 
recreational fishing activities can be stated as follows: 
 

Maxy, z u = u(y, z | a, s)     subject to py + qz = I  
 
where u(.) represents the utility function which is assumed to be continuous, increasing, and quasi-concave, y is 
quantity demanded of saltwater recreational fishing activities, i.e. the number of saltwater recreational fishing trips 
to the fishing site, z represents the quantity of all other goods consumed, a is the vector of exogenous attributes of 
the activity or site, s is the vector of socioeconomic characteristics, p is travel cost of saltwater recreational fishing 
trips, q is the vector of prices of other goods and services, and I is income.  
 
Then the angler’s demand function for saltwater recreational fishing activities can be expressed in terms of 
saltwater recreational fishing trips (Zawacki et al., 2000) as follows: 
 

Y = f (x, β, ε) 
 
where Y is the vector of the dependent variable representing the number of saltwater recreational fishing trips to 
the fishing site, x is the vector of independent variables such as travel cost, travel time, socioeconomic factors, and 
trip characteristics, β is a vector of parameters including, but not limited to, the estimated coefficients of the 
independent variables, and ε is the vector of the random error term assumed to be independent and identically 
distributed.  
 
This study employed the count data models to analyze U.S. saltwater recreational fishing trips with excess zeros, 
using a cross-sectional data extracted from the 2011 National Survey of Fishing, Hunting, and Wildlife Associated 
Recreation (U.S. Fish and Wildlife Service, 2014). The choice of explanatory variables selected for this empirical 
analysis was based on the conceptual model of saltwater recreational fishing activities, integrating anglers and 
fisheries resources and habitats. This conceptual model demonstrates the context of the human-fisheries interaction 
and provides a framework that identifies utility maximization as the ultimate objective for the anglers in saltwater 
recreational fishing activities in terms of their participation decisions.  
 
For this study, the dependent variable is the number of saltwater recreational fishing trips, and the explanatory 
variables include age, household income, male, graduate or professional degree, minority, living in the urban 
settings, salmon, striped bass, bluefish, flatfish, redfish, sea trout, mackerel, marlin, tuna, mahi-mahi, and shellfish. 
Description and Descriptive statistics of all parameters used in this empirical analysis are presented in Table 1.  
 
Table 1. Parameter Description and Descriptive Statistics of Count Data Models 

Parameter Description Mean Standard Deviation 
FISHING TRIPS The number of saltwater recreational fishing trips 3.070 11.570 
AGE Respondent’s age (in year; 16 years old and older) 46.596 16.085 
HOUINC 1 if respondent’s household income greater than 

$50,000; 0 otherwise 
0.559 0.497 

MALE Respondent’s gender; 1 if male; 0 otherwise 0.741 0.438 
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GRADUATE Respondent’s education level; 1 if graduate or 
professional degree; 0 otherwise 

0.121 0.326 

MINOR Respondent’s ethnicity; 1 if minority; 0 otherwise 0.134 0.340 
URBAN 1 if respondent lived in the urban settings; 0 otherwise 0.521 0.500 
SALMON 1 if Salmon was one type of targeted fish; 0 otherwise 0.023 0.151 
SBASS 1 if Striped Bass was one type of targeted fish; 0 

otherwise 
0.079 0.270 

BLUEFISH 1 if Bluefish was one type of targeted fish; 0 otherwise 0.039 0.194 
FLATFISH 1 if Flounder, Flatfish, or Halibut was one type of 

targeted fish; 0 otherwise 
0.064 0.245 

REDFISH 1 if Red Drum (Redfish) was one type of targeted fish; 
0 otherwise 

0.031 0.173 

SEATROUT 1 if Sea Trout (Weakfish) was one type of targeted 
fish; 0 otherwise 

0.025 0.157 

MACKEREL 1 if Mackerel was one type of targeted fish; 0 
otherwise 

0.018 0.132 

MARLIN 1 if Marlin was one type of targeted fish; 0 otherwise 0.007 0.081 
TUNA 1 if Tuna was one type of targeted fish; 0 otherwise 0.018 0.131 
MAHI-MAHI 1 if Dolphin (Mahi-Mahi) was one type of targeted 

fish; 0 otherwise 
0.016 0.124 

SHELLFISH 1 if Shellfish was one type of targeted fish; 0 otherwise 0.027 0.162 
Source: Computed by authors using 2011 National Survey of Fishing, Hunting, and Wildlife-Associated 
Recreation 
 
The software used in this empirical analysis is SAS version 9.4 Window environment. There are various built in 
procedures including GENMOD, COUNTREG, FMM, and NLMIXED that are commonly used in SAS count data 
analysis. The NLMIXED Procedure was used in fitting the count data models for this study. Empirical results of 
the count data models for U.S. saltwater recreational fishing trip are presented in Table 2.  
 
The parameter estimates of count data models with the exception of ZIP, ZINB and Hurdle models have the same 
interpretation. Each regression coefficient is interpreted as the change in log count in the response variable per 
unit change in the predictor variable. Another way is to take exponential function of the parameter estimates before 
interpreting them.  
 
It is often a good practice to compare count data models for the purpose of making the right decision on the one 
that best fits the data. The most common goodness of fit statistics used in comparison of count data models are 
Akaike information criterion (AIC), -2 Log-Likelihood + 2k where k = number of parameters, and Bayesian 
Information Criterion (BIC), -2 Log-Likelihood + k ln(n) where n = the number of observations. In general, the 
smaller AIC and/or BIC value refers to the better model.  
 
Table 2. Parameter Estimates (Standard Errors) for Count Data Models 

Parameter Poisson NB ZIP ZINB ZTP ZTNB Hurdle 
INTERCEPT -0.4074 

(0.0325) 
-1.4900 
(0.1398) 

1.4798 
(0.0342) 

1.2562 
(0.1300) 

-1.2480 
(0.0420) 

-1.2523 
(0.6810) 

1.4790 
(0.0341) 

AGE 0.0055 
(0.0005) 

0.0106 
(0.0023) 

0.0026 
(0.0005) 

0.0059 
(0.0020) 

0.0083 
(0.0006) 

0.0097 
(0.0036) 

0.0026 
(0.0005) 

HOUINC 0.0621 
(0.0156) 

-0.0812 
(0.0717) 

-0.1148 
(0.0155) 

-0.1259 
(0.0621) 

0.1163 
(0.0186) 

-0.1707 
(0.1140) 

-0.1142 
(0.0155) 

MALE 0.2091 
(0.0198) 

0.1277 
(0.0801) 

0.2428 
(0.0198) 

0.2399 
(0.0689) 

0.3041 
(0.0254) 

0.3580 
(0.1209) 

0.2432 
(0.0198) 

GRADUATE -0.1548 
(0.0234) 

-0.2395 
(0.1109) 

-0.3759 
(0.0236) 

-0.4497 
(0.0815) 

-0.1544 
(0.0271) 

-0.6578 
(0.1445) 

-0.3765 
(0.0235) 
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MINOR 0.8375 
(0.0180) 

1.4513 
(0.0989) 

0.4929 
(0.0181) 

0.5904 
(0.0784) 

1.0944 
(0.0202) 

0.8590 
(0.1484) 

0.4928 
(0.0181) 

URBAN 0.4068 
(0.0159) 

0.5890 
(0.0701) 

0.1985 
(0.0159) 

0.1974 
(0.0603) 

0.6148 
(0.0197) 

0.2700 
(0.1084) 

0.1981 
(0.0159) 

SALMON 0.9607 
(0.0290) 

1.8177 
(0.2112) 

0.1301 
(0.0286) 

0.1475 
(0.1070) 

1.1530 
(0.0305) 

0.2219 
(0.1923) 

0.1309 
(0.0285) 

SBASS 1.2446 
(0.0195) 

2.1606 
(0.1230) 

0.4177 
(0.0172) 

0.5133 
(0.0728) 

1.4655 
(0.0214) 

0.7218 
(0.1361) 

0.4185 
(0.0172) 

BLUEFISH 0.6205 
(0.0227) 

1.1062 
(0.1717) 

0.3982 
(0.0199) 

0.3609 
(0.0893) 

0.7001 
(0.0239) 

0.4919 
(0.1695) 

0.3973 
(0.0199) 

FLATFISH 0.7428 
(0.0201) 

1.5666 
(0.1322) 

0.3262 
(0.0170) 

0.3540 
(0.0713) 

0.8373 
(0.0216) 

0.4978 
(0.1331) 

0.3261 
(0.0170) 

REDFISH 0.8898 
(0.0254) 

1.5323 
(0.1894) 

0.2777 
(0.0238) 

0.2894 
(0.1050) 

1.0393 
(0.0266) 

0.4118 
(0.1961) 

0.2776 
(0.0238) 

SEATROUT 0.3868 
(0.0258) 

1.2969 
(0.2078) 

0.4022 
(0.0233) 

0.4322 
(0.1113) 

0.3431 
(0.0266) 

0.5836 
(0.2120) 

0.4021 
(0.0233) 

MACKEREL 0.2853 
(0.0279) 

1.6216 
(0.2426) 

0.2186 
(0.0255) 

0.3605 
(0.1182) 

0.2145 
(0.0292) 

0.5261 
(0.2267) 

0.2183 
(0.0255) 

MARLIN 0.1959 
(0.0465) 

1.1953 
(0.4229) 

0.4611 
(0.0411) 

0.4962 
(0.2123) 

0.0667 
(0.0481) 

0.7532 
(0.4451) 

0.4601 
(0.0411) 

TUNA 0.2390 
(0.0393) 

1.7158 
(0.2460) 

0.0067 
(0.0339) 

0.2347 
(0.1263) 

0.3052 
(0.0416) 

0.4467 
(0.2375) 

0.0090 
(0.0336) 

MAHI-MAHI 0.9468 
(0.0375) 

1.8329 
(0.2902) 

0.5060 
(0.0332) 

0.5424 
(0.1484) 

1.0595 
(0.0394) 

0.7055 
(0.2933) 

0.5047 
(0.0332) 

SHELLFISH 0.9838 
(0.0263) 

1.8973 
(0.1975) 

0.2758 
(0.0259) 

0.2136 
(0.0995) 

1.1489 
(0.0276) 

0.2655 
(0.1768) 

0.2758 
(0.0259) 

ALPHA --- 5.8163 
(0.1922) 

--- 1.2638 
(0.0422) 

--- 23.6119 
(16.1061) 

--- 

-2 Log- 
Likelihood 

57322 16132 36714 11154 53136 10134 36715 

AIC 57358 16170 36786 11228 53172 10172 36787 
AICC 57358 16170 36787 11229 53172 10172 36787 
BIC 57479 16297 37028 11476 53292 10275 37028 

Source: Computed by authors using 2011 National Survey of Fishing, Hunting, and Wildlife-Associated 
Recreation 
 
The zero-truncated negative binomial model was selected because of lower AIC and BIC values. In the parameter 
estimates for zero-truncated negative binomial model, the age of respondents appeared to have a positive and 
significant impact on the saltwater recreational fishing trips. The value of the coefficient for “AGE” (0.0097) 
suggests that the log count of saltwater recreational fishing trips increases by 0.0097 for each unit increase in age 
group. It shows that the older a recreational angler’s age, the more saltwater recreational fishing trips taken. 
 
The coefficient for “MALE” (0.3580) is statistically significant and indicates that the log count of saltwater 
recreational fishing trips for male anglers is 0.3580 more than for female anglers. The coefficient for 
“GRADUATE”, -0.6578, is statistically significant and indicates that the log count of saltwater recreational fishing 
trips for anglers who had graduate or professional degree is 0.6578 less than for non-advanced degree anglers. The 
coefficient for “MINOR” (0.8590) is statistically significant and indicates that the log count of saltwater 
recreational fishing trips for minority anglers is 0.8590 more than for non-minority anglers. 
 
The coefficient for “SBASS” (0.7218) is statistically significant and indicates the log count of saltwater 
recreational fishing trips for striped bass is 0.7218 more than for other fish species. The coefficient for 
“BLUEFISH” (0.4919) indicates the log count of saltwater recreational fishing trips for bluefish is 0.4919 more 
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than for other fish species significantly. The coefficient for “FLATFISH” (0.4978) is statistically significant and 
indicates the log count of saltwater recreational fishing trips for flounder, flatfish, or halibut is 0.4978 more than 
for other fish species. The coefficient for “SEATROUT” (0.5839) indicates the log count of saltwater recreational 
fishing trips for sea trout is 0.5839 more than for other fish species significantly. 

5. Conclusion and Discussion 

This study aimed to demonstrate the various range of analysis suitable for count data by modeling saltwater 
recreational fishing trips taking into consideration the issues of over-dispersion, excess zeros and zero truncation. 
Count data models are used to model the data in which the dependent variable is count. There are different count 
data models and is difficult to choose one that best fits the count data. The models considered in this study included 
Poisson, negative binomial, zero-inflated Poisson, zero-inflated negative binomial, zero-truncated Poisson, zero-
truncated negative binomial, and hurdle Poisson models.  
 
The Poisson model is the fundamental model to be fitted for count data where there are no over-dispersion issues 
and issues with excess zeros. For count data with over-dispersion, a negative binomial model is more appropriate. 
If excessive zeros are present in the count data, then two part models such as zero-inflated models and hurdle 
models are more suited to be fitted in such cases. The results of the zero-inflated models and hurdle model are 
similar but interpretation of hurdle model is much easier. Furthermore, where there is zero truncation of the count 
data, then zero-truncated models should be rather used.  
 
In selecting a model, there is no fixed yardstick that easily shows the best model. It is not always that simple¸ the 
best model choice is not easily that obvious as one that performs best in one regard may not be best in another. 
There are always pros and cons to consider. In selecting the best model, one needs to consider whether that 
particular model assumptions are met, nature of count data, the relevance of the zeros to the study, over-dispersion, 
goodness of fit statistics (i.e. AIC, BIC) comparison as well as zero truncation of count data before deciding on 
the best fit model for the data.  

 
In addition, consistent with the findings of previous studies, males would go fishing more when they participated 
in saltwater recreational fishing activities. The positive signs on the variable “MINOR” suggested that those 
recreational anglers who would go fishing more in saltwater recreational fishing activities. In addition, the positive 
sign on the variable “URBAN” suggested that those who resided in urban settings have a higher demand for 
saltwater recreational fishing activities. Results also pointed out that respondents who had graduate or professional 
degree did not have significant effect on U.S. saltwater recreational fishing trips.  
 
Empirical results of this study indicated that the mature minority male living in the urban area would go fishing 
for striped bass, bluefish, flatfish, redfish, sea trout, mackerel, tuna, and mahi-mahi in U.S. saltwater areas. 
Therefore, recreational anglers living in urban settings does appear to be a distinguishing factor in saltwater 
recreational fishing activities. Therefore, saltwater recreational fishery managers should have an opportunity to 
target this user group in their management plans, expanding a shrinking constituency.  

 
Also, empirical results of this study found that targeting one or more of specific species have positive and 
significant impacts on U.S. saltwater recreational fishing trips, indicating that demand increases significantly with 
the presence of fish categories including striped bass, bluefish, flatfish, redfish, sea trout, mackerel, tuna, and 
mahi-mahi. Thus, the availability of a diversity of species plays an important role in saltwater recreational fishing. 
Fishery managers should educate the public about the availability or location of diverse habitats to generate 
continued interest and increased participation in saltwater recreational fishing. 
 
More importantly, healthy fisheries habitat is not only essential for a healthy fishery, but is also an essential part 
of the fishing experience. Without a healthy fishery based on healthy fisheries habitats the effort will fail. Saltwater 
recreational fishing adds to mixed activity vacation venues attracting anglers and families with multiple interests. 
Particularly, saltwater recreational fishing business succeed on the basis of the quality of the fishable resource, the 
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quality of the ancillary experience of nature, comfort and well-directed marketing that matches the venue to the 
needs of various types of anglers (Cisneros-Montemayor and Sumaila, 2010). 
 

Without adequate fishes and their habitats, there would be far fewer or no participants in saltwater recreational 
fishing activities. In addition, the purpose of saltwater recreational fishing trips would be expected to have a 
positive impact on saltwater recreational fishing expenditures. Thus, fisheries habitats and populations can be 
viewed a critical factor, as with an increase in ecosystem and biodiversity of fisheries, the more saltwater 
recreational anglers would participate in and consume (Cisneros-Montemayor and Sumaila, 2010).  
 
Many studies neglect how best to model saltwater recreational trips and get meaningful insights into the behavior 
of saltwater anglers that affect their saltwater fishing trips behavior and participation. This study aims to provide 
guidelines and create awareness for the proper use of count data models that will lead to results that are more 
accurate and get a better understanding of saltwater recreational fishing trips that would eventually lead to 
promotion of saltwater recreational fishing and tourism as a whole. 

 
Results from this study may give better understanding of recreational fishing trips among saltwater anglers and 
also provide guidelines for saltwater recreational fisheries planning and management. It may also serve as a 
yardstick in encouraging the proper use of count data models so as to get accurate results and get a better 
understanding of count data models. Therefore, the empirical results of this study provide insight into the 
determinants of saltwater recreational fishing trips, which can be used in analyzing the social and economic values 
of saltwater recreational fisheries planning and management. 
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