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Abstract 
The purpose of this study was to demonstrate the role of time series model in predicting process and to pursue 
analysis of time series data using long-term records of global average sea level change from 1880 to 2013 extracted 
from the U.S. Environmental Protection Agency using data from Commonwealth Scientific and Industrial 
Research Organization, 2015. Following the Box–Jenkins method, ARIMA(0,1,1,) model was the best fitted model 
in prediction for the data, Global Average Absolute Sea Level Change, 1880-2013, in this study. Forecasting 
process with ARIMA(0,1,1) model for prediction indicated global average sea level change at a constant increasing 
rate in the short-term. Understanding past sea level is important for the analysis of current and future sea level 
changes. In order to sustain these observations, research programs utilizing the resulting data should be able to 
significantly improve our understanding and narrow projections of future sea level rise and variability. 
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1. Introduction 

 
Climate change is the long term change that occurs in the average weather patterns of the earth. It is primarily 
triggered by human activities like burning of fossil fuels, deforestation, etc. or natural events like volcanic 
eruptions. National Oceanic and Atmospheric Administration (NOAA) 2019 Global Climate Annual Report 
summarized that the global annual temperature has increased at an average rate of 0.07°C (0.13°F) per decade 
since 1880. To make it worse, this rate (+0.18°C/ +0.32°F) of increase has doubled since 1981 
(https://www.ncdc.noaa.gov/sotc/global/201913). 
 
Sea level rise is caused primarily by two factors related to climate change: the added water from melting of land 
ice (ice sheets and glaciers) to the world’s oceans and the thermal expansion of seawater temperature rise. The 
potential impacts of sea level rise include, but not limited to, increasing coastal flooding and erosion, damages on 



Asian Institute of Research                             Journal of Economics and Business                                           Vol.3, No.2, 2020  

673 

agricultural land cover and crops, damages on coastal/urban settlements and infrastructures, damages on coastal 
flora and fauna ecosystems, increasing environmental sanitation problem, and increasing public health problem. 
According to Climate.gov, global average sea level has risen about 8–9 inches (21–24 cm) since 1880 
(https://www.climate.gov/news-features/understanding-climate/climate-change-global-sea-level). Church et al. 
(2004) used TOPEX/Poseidon satellite altimeter data and combined with historical tide gauge data to estimate 
monthly distributions of large-scale sea level variability and change over the period 1950–2000. The computed 
rate of global average sea level rise from the reconstructed monthly time series was 1.8 ± 0.3 mm year-1. 
 
After that, Church and White (2006) indicated that a larger rate of sea level rise after 1993 and other periods of 
rapid sea level rise but no significant acceleration over this period using tide-gauge data from 1950 to 2000. They 
extended the reconstruction of sea level back to 1870 and found a sea level rise from January 1870 to December 
2004 of 195 mm, a 20th century rate of sea level rise of 1.7 ± 0.3 mm yr-1 and a significant acceleration of sea 
level rise of 0.013 ± 0.006 mm yr-2.  
 
In 2011, Church and White (2011) found that the estimated rate of sea level rise was 3.2 ± 0.4 mm year−1 from the 
satellite data and 2.8 ± 0.8 mm year−1 from the in situ data. The global average sea level rise from 1880 to 2009 
was about 210 mm. The linear trend from 1900 to 2009 was 1.7 ± 0.2 mm year−1 and since 1961 was 1.9 ± 0.4 mm 
year−1. They also documented that there was considerable variability in the rate of sea level rise during the 
twentieth century but there has been a statistically significant acceleration since 1880 and 1900 of 0.009 ± 0.003 
mm year−2 and 0.009 ± 0.004 mm year−2, respectively.  
 
The Intergovernmental Panel on Climate Change (IPCC) (2014) estimated that the sea level has risen by 26–55 cm 
(10–22 inches) with a 67% confidence interval. If emissions remain very high, the IPCC projected sea level could 
rise by 52–98 cm (20–39 inches). In its Fourth National Climate Assessment Report (2017) the U.S. Global 
Change Research Program (USGCRP) estimated that sea level has risen by about 7–8 inches (about 16–21 cm) 
since 1900, with about 3 of those inches (about 7 cm) occurring since 1993 (very high confidence). Relative to the 
year 2000, sea level was very likely to rise by 1.0–4.3 feet (30–130 cm) in 2100, and 0.3–0.6 feet (9–18 cm) by 
2030. 
 
There had many studies pointed out that sea level is rising at an increasing rate (Church et al., 2008); Cazenave 
and Llovel, 2010; Cazenave and Cozannet, 2013; Horton et al., 2018; Kulp and Strauss, 2019; Haasnoot, 2020). 
Thus, understanding past sea level is important for the analysis of current and future changes. Modeling sea level 
change and understanding its causes has considerably improved in the recent years, essentially because new in situ 
and remote sensing observations have become available (Foster and Brown, 2014; Visser et al., 2015; Bolin, 2015; 
Srivastava et al., 2016). Despite the importance of sea level rise and its consequences, there is a lack of studies in 
the technical literature available on forecasting schemes. 
 
The purpose of this study is to demonstrate the role of time series model in predicting process and to pursue 
analysis of time series data using long-term records of global average sea level change from 1880 to 2013. Time 
series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other 
characteristics of the data, while time series forecasting is the use of a model to predict future values based on 
previously observed values. Time series forecasting is one of the most applied data science techniques in business, 
used extensively in finance, supply chain management, production and inventory planning. It has a well-established 
theoretical grounding in statistics and dynamic systems theory. It is important because there are so many prediction 
problems that involve a time component. These problems are neglected because it is this time component that 
makes time series problems more difficult to handle. 
 

2. Materials and Methods 

 
The data, Global Average Absolute Sea Level Change, 1880-2013 (Figure 1), used for this study is available to 
the general public from the US Environmental Protection Agency 
(http://www3.epa.gov/climatechange/images/indicator_downloads/sea-level_fig-1.csv) using data from CSIRO 
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(Commonwealth Scientific and Industrial Research Organization), 2015,  
(http://www.cmar.csiro.au/sealevel/GMSL_SG_2011_up.html).  
 
The data contains “cumulative changes in sea level for the world’s oceans since 1880, based on a combination of 
long-term tide gauge measurements and recent satellite measurements. It shows average absolute sea level 
change, which refers to the height of the ocean surface, regardless of whether nearby land is rising or falling. 
Satellite data are based solely on measured sea level, while the long-term tide gauge data include a small 
correction factor because the size and shape of the oceans are changing slowly over time. (On average, the ocean 
floor has been gradually sinking since the last Ice Age peak, 20,000 years ago.)” (Quoted from 
https://datahub.io/core/sea-level-rise#readme). 
 

 
Figure 1. Time Series Plot of Global Average Absolute Sea Level Change, 1880-2013 

 
A common approach in the analysis of time series data is to consider the observed time series as part of 
a realization of a stochastic process. In time series analysis and its various applications, a common assumption is 
that the data are stationary. Intuitively, stationarity means that the statistical properties (i.e., mean and variance) of 
the process do not change over time. In mathematics and statistics, stationarity is a property of a stochastic 
process. 
 
ARIMA models are regression models that use lagged values of the dependent variable and/or random disturbance 
term as explanatory variables. In ARIMA model, the Autoregressive Process (AR) part of ARIMA indicates that 
the evolving variable of interest is regressed on its own lagged (i.e., prior) values; the Moving Average Process 
(MA) part indicates that the regression error is actually a linear combination of error terms whose values occurred 
at various times in the past; and the I (for "integrated") indicates that the data values have been replaced with the 
difference between their values and the previous values (and this differencing process may have been performed 
more than once). The purpose of each of these features is to make the model better fit to predict future points in a 
time series data as well as possible (Montgomery et al., 2008). 
The general form of ARIMA model of order (p,d,q) is 
 

Yt = ϕ0 + ϕ1Yt−1 + ϕ2Yt−2 + ⋯ + ϕpYt−p + εt − θ1εt−1 − θ2εt−2 − ⋯ − θqεt−q    (1) 
 
where p = order of time lags, d = order of differencing, q = order of moving average, Yt is value of the series at 
time t, Yt-1, Yt-2, …, Yt-p are dependent on the past values of the variable at specific time points, ϕ0, ϕ1, ϕ2, …, ϕp 
are the regression coefficient, θ1, θ2, …, θq are the (weights) coefficients applied to εt−1, εt−2, …, εt−q previous 
forecast errors and εt is error part (not explained by model). 
 
In time series analysis, the Box–Jenkins method, named after the statisticians George Box and Gwilym Jenkins 
(Box and Jenkins, 1970), applies ARIMA models to find the best fit of a time series model to past values of a time 
series. The Box–Jenkins method refers to a systematic method of identifying, fitting, checking, and using ARIMA 
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models (Box et al., 2016), which is the process for estimating ARIMA models based on the autocorrelation 
function (ACF) and partial autocorrelation function (PACF) as a means of determining the stationarity of the 
variable in question and the lag lengths of the ARIMA model. Thus, the Box–Jenkins method starts with the 
assumption that the process that generated the time series can be approximated using an ARMA model if it is 
stationary or an ARIMA model if it is non-stationary. 
 
For ARIMA model, there are four important steps, including identification, estimation, diagnostic checking and 
forecasting, should be put in consideration to apply it. ARIMA models rely heavily on the autocorrelation pattern 
in the time series data. Identification step applied to achieve stationarity and to build a suitable model using ACFs, 
PACFs, and transformations (differencing). If the time series is not stationary, it needs to be stationarized through 
differencing. Stationarizing a time series through differencing is an important part of the process of fitting 
an ARIMA model. In practice, it is almost not necessary to go beyond second difference, because real data 
generally involve only first or second level non-stationarity.  
 
In the estimation step, plots and summary statistics can be used to identify trends and autoregression elements to 
get an idea of the amount of differencing and the size of the lag that will be required for model identification. The 
following estimation step is to use a fitting procedure to find the coefficients of the model. In order to discover 
good parameters for the model, Akaike’s Information Criterion (AIC) or Bayesian Information Criterion (BIC) 
can be used to determine the order p and q of an ARIMA model. Good models are obtained by minimizing the 
AIC or BIC. 
 
Diagnostic checking step is primarily to use plots and statistical tests of the residual errors to determine the model 
fitting, and to evaluate the fitted model in the context of the available data and check for areas where the model 
may be improved. The process is repeated until a desirable level of fit is achieved, and non-significant parameters 
can be removed from the model. There are many accuracy metrics applied after model identification and estimation 
helping in choosing the best fitted model. The commonly used accuracy metrics to judge forecasts are: Mean 
Square Error (MSE) = (1/n)Σ(Yt – Ŷt)2, Root Mean Square Error (RMSE) = √MSE, Mean Absolute Percentage 
Error (MAPE) = (1/n)Σ(|Yt – Ŷt| / |Yt|) * 100, and Mean Absolute Error (MAE) = (1/n)Σ|Yt – Ŷt|2 (Montgomery et 
al., 2008). 
 
The last step is forecasting step that can be applied in prediction process after checking the model in the previous 
steps. The Forecasting Module of IBM SPSS Statistics 26 was used as the tool to estimate the model parameters 
to fit the ARIMA models in predicting global average sea level change to achieve the purpose of this study. 
 

3. Empirical Results 

 
3.1 Identification of ARIMA Model 
By looking at the time plot of the data, ACF plot is useful for identifying non-stationary time series. For a 
stationary time series, the ACF will drop to zero relatively quickly, while the ACF of non-stationary data 
decreases slowly. The ACF plot of the data, Global Average Absolute Sea Level Change, 1880-2013, used for 
this study (Figure 2) showed strong positive statistically significant correlations at up to 16 lags that never decay 
to zero. This suggested that the time series is non-stationary and should be differenced. As a result, there is no 
need yet to examine the PACF for the time series. 
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Figure 2. ACF Plot of Global Average Absolute Sea Level Change, 1880-2013 

 
In terms of non-stationary time series, differencing can be used to transform a non-stationary time series into a stationary 
one. The first difference of a time series is the time series of changes from one period to the next. Notice that the 
graph of the first difference of the data, Global Average Absolute Sea Level Change, 1880-2013, looked 
approximately stationary (Figure 3). 
 

 
Figure 3. Time Series Plot for First Difference 

 
Figures 4 and 5 presented the ACF and PACF, respectively, of first difference of the data, Global Average Absolute 
Sea Level Change, 1880-2013. The ACF in Figure 4 and the corresponding PACF in Figure 5 showed a similar 
pattern that looked mostly like a steady decay toward zero after the first few lags. Together, this could suggest that 
the time series of first difference followed a first-order moving average process. Further analysis of the data, Global 
Average Absolute Sea Level Change, 1880-2013, should be conducted by estimating an ARIMA model. 
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Figure 4. ACF Plot for First Difference 

 

 
Figure 5. PACF Plot for First Difference 

 
There were many time series models suggested to represent the data with the normalized BIC values as in Table 
1. The most fitted model was with the smallest normalized BIC value (-3.002). The most suitable model was Holt’s 
exponential smoothing method. Also, ARIMA model with ordering (0,1,1) is good in prediction process with BIC 
value (-2.994), followed by (1,1,0), (0,1,2) and (1,1,1) of BIC values (-2.961), (-2.957), and (-2.957), respectively. 
The other model statistics which indicated fitting of the model to the data were higher MAPE value with the lowest 
normalized BIC and lower RMSE value. All these measures were a good indicator of fitting of the model to the 
data well. 
 
Table 1. Comparison of Different ARIMA Models 

Model Normalized BIC RMSE MAPE MAE 
Holt’s Exponential Smoothing -3.002 0.215 11.887 0.168 
ARIMA(0,1,1) -2.994 0.216 12.014 0.169 
ARIMA(1,1,0) -2.961 0.219 12.042 0.171 
ARIMA(0,1,2) -2.957 0.216 11.708 0.168 
ARIMA(1,1,1) -2.957 0.216 11.724 0.169 
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ARIMA(2,1,0) -2.943 0.217 11.967 0.170 
ARIMA(2,1,1) -2.913 0.217 11.683 0.168 
ARIMA(0,1,3) -2.913 0.217 11.685 0.168 
ARIMA(1,1,2) -2.912 0.217 11.696 0.168 
ARIMA(1,1,3) -2.879 0.216 11.655 0.168 
ARIMA(2,1,2) -2.877 0.216 11.737 0.169 
Simple Exponential Smoothing -2.875 0.233 12.166 0.183 
ARIMA(2,1,3) -2.834 0.217 11.670 0.168 
ARIMA(0,2,2,) -2.736 0.241 13.832 0.183 
ARIMA(2,0,0) -1.656 0.414 12.837 0.215 
ARIMA(2,0,3) -1.508 0.422 12.159 0.212 
ARIMA(1,0,0) -1.496 0.456 12.949 0.220 
ARIMA(2,0,1) -1.469 0.446 12.147 0.215 
ARIMA(0,0,3) -0.460 0.738 38.585 0.567 
ARIMA(1,0,1) -1.421 0.465 12.124 0.217 
ARIMA(3,0,0) -1.389 0.464 12.865 0.220 
ARIMA(1,0,2) -1.366 0.469 12.204 0.217 
ARIMA(1,0,3) -1.359 0.463 12.335 0.216 
ARIMA(2,0,2) -1.322 0.471 12.078 0.217 
ARIMA(0,0,2) 0.344 1.124 72.435 0.915 
ARIMA(0,0,1) 0.745 1.399 90.279 1.188 

 
3.2 Estimation of the Model Parameters 
The parameters of Holt’s Exponential Smoothing Method were presented in Table 2. Even Holt’s exponential 
smoothing method was the most suitable model for the time series data, but the smoothing parameter for the trend 
(α2) had a very small value (= 0.00001951), which means that the slope hardly changes over time, and also 
was not significant statistically. Thus, in this case, Holt’s exponential smoothing method is identical to the simple 
Exponential Smoothing method. 
 
Table 2. Parameters of Holt’s Exponential Smoothing Method 

Parameter Estimate SE t Sig. 
α1 (Level) 0.601 0.083 7.232 0.000 
α2 (Trend) 1.951E-5 0.032 0.001 1.000 

 
Given this option, ARIMA(0,1,1) was chosen for further forecasting process, and the parameters of ARIMA(0,1,1) 
model were presented in Table 3. The ARIMA(0,1,1) model for the data, Global Average Absolute Sea Level 
Change, 1880-2013, can be expressed as follows: 
 

Ŷt = 0.069 + Yt−1 + 0.395εt−1 + εt        (2) 
 
Table 3. Parameters of ARIMA(0,1,1) Model 

Parameter Estimate SE t Sig. 
Constant 0.069 0.011 6.029 0.000 
Difference 1    
MA Lag 1 0.395 0.081 4.891 0.000 

 
3.3 Diagnostic Checking of the Model 
The Ljung–Box Q–test (Ljung and Box, 1978) is a diagnostic tool used to test the lack of fit of a time series model. 
The test statistic of the Ljung–Box Q–test was Q = 9.216 with 17 degrees of freedom and the p-value of the test 
was 0.933, which is much larger than 0.05. Thus, the null hypothesis that autocorrelations up to lag k equal zero 
(that is, the data values are random and independent up to a certain number of lags) was accepted. It concluded 
that the model was correctly specified. 
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Figure 6 illustrated the ACF and the PACF, respectively, for the residuals resulting from the estimated ARIMA 
(0,1,1) model. Reading from the bottom up, both figures showed no pattern in the correlations reported among the 
residuals nor did any of the correlations extend beyond the vertical 95% confidence intervals included in the plots. 
This, combined with the Ljung–Box Q–test statistic, suggested that the ARIMA (0,1,1) model appropriately 
modeled the dynamics for this time series. 
 

 
Figure 6. Residuals of ACF and PACF 

 
3.4 Using the Model in Forecasting Process 
The actual and predicted values of Global Average Absolute Sea Level Change were shown in Table 4 and Figure 
6. Forecasting process with the ARIMA(0,1,1) model for prediction, i.e., 10 years of future Global Average 
Absolute Sea Level Change indicated a good fitting of the model for prediction at a constant increasing rate in the 
short term. 
 
Table 4. Statistics for Prediction of Global Average Absolute Sea Level Change 

Year Forecast 95% Lower Control Limit 95% Upper Control Limit 
2014 9.159 8.732 9.585 
2015 9.227 8.729 9.726 
2016 9.296 8.734 9.857 
2017 9.364 8.746 9.982 
2018 9.433 8.763 10.102 
2019 9.501 8.784 10.219 
2020 9.570 8.807 10.333 
2021 9.638 8.833 10.444 
2022 9.707 8.861 10.553 
2023 9.776 8.891 10.660 
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Figure 7. Actual and Predicted Global Average Absolute Sea Level Change 

 

4. Conclusion 

 
In this study the best choice time series model was ARIMA(0,1,1,) model as its high R-squared and the lowest 
BIC values among other models. It was noticed that global average sea level would increase as this ARIMA(0,1,1) 
model gave evidence about future global average sea level rise. This model also provided information which are 
important in decision making process related to the future sea level rise impacts. Also, ARIMA model is a good 
time series model in forecasting the future performance not only for regional but also for national sea level rise 
outcomes. 
 
There were many studies revealed that sea level is rising at an increasing rate. Thus, understanding past sea 
level is important for the analysis of current and future changes.  Tides, for example, are predictable because they 
are produced by a combination of forces that are predictable. These forces are determined by the movements and 
positions of objects in our solar system, particularly the earth and the moon in relation to the sun. To understand 
tides, therefore, it is important to understand the movements of the earth and the moon relative to the sun. However, 
most of the time, and in most places, tides are much more complex.  
 
Sea level rise is a relatively slow process, and the majority of impacts, with the exception of seasonally flooded 
low-lying coastal areas, are predicted and modeled for the future. In order to sustain these observations, research 
programs utilizing the resulting data should be able to significantly improve our understanding and narrow 
projections of future sea level rise and variability. 
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